ASSIGNMENT SET - I

Mathematics: Semester-IV

M.Sc (CBCS)

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

PAPER - MTM-403

Paper: Soft Computing

Answer all the questions
a. What is activation function? Mention two such activation function
b. What are the basic parameters of involved in Genetic Algorithm (GA)?
c. What are the disadvantages of binary coded Genetic Algorithm?
d. What do you mean by supervised and unsupervised learning?
e. Write down the features of soft computing.
f. Mention the ranges of different GA parameters.
g. Define Tautology and Contradiction. Obtain a truth table for $(\boldsymbol{P} \cup \boldsymbol{Q}) \Rightarrow(\sim \boldsymbol{P})$. Is it Tautology?
h. What do you mean by Inference in propositional logic?
i. Describe uniform crossover in GA.

Each question

2
a. Draw a flow chart of Genetic Algorithm.
b. Select the parent chromosomes for crossover using Roulette wheel selection procedure for the following information. Objective function: $\operatorname{Max} f(x)=50 x-x^{2}, 1 \leq x \leq 30$, Current population: 01011, 10011, 01110, 01010, 01101 Random numbers: $0.41,0.97$, $0.12,0.36,0.64$
c. Find the relational matrix of the concept "a young tall man", where "Young man" $=\frac{0}{115}+\frac{0.5}{120}+\frac{1}{125}+\frac{0.5}{130}+\frac{0}{135}$ and "Tall man" $=\frac{0}{170}+$ $\frac{0.5}{175}+\frac{1}{180}+\frac{1}{185}+\frac{1}{190}$, if possible with reason.
d. Short note on the following terms: Hybrid Computing, Biological Neural Network, Fuzzy logic, supervise learning.
e. Show that Hebb net does not implement the logical AND gate for binary input and output patterns.
f. Discuss two defuzzification methods which are used in fuzzy logic.
g. Discuss different fuzzy inference rules with their mathematical formulations.
h. What is perceptron? Describe single layer perceptron.
i. What do you mean by Learning and Training in a Neural Network? Briefly describe Supervised and Reinforcement learning in NN.
a. Generate the output of logical OR function by McCulloch-Pitts neuron model.
b. Verify the output of logical OR function by a single perceptron. Given initial weights $w=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and initial bias $b=-1$.
c. What do you mean by Fuzzy Inference System. Describe Mamdani's fuzzy inference method in short.
d. Write the algorithm of perceptron neural network for several output classes.
e. Maximize $f(x)=4+10 x-x^{2}, 1 \leq x \leq 9$ using binary coded GA. Given that population size $N=5$, initial population $x_{1}=$ $10111, x_{2}=10101, x_{3}=11100, x_{4}=11101, x_{5}=10100$.

Random numbers for selection: $0.19,0.63,0.97,0.11,0.70$. Cross-

Each

question
carries
4 marks

over probability, $P_{c}=0.8$ and random numbers for cross-over: $0.60,0.85,0.57,0.37,0.70$. Mutation probability, $P_{m}=0.04$ and random numbers for mutation: $0.21,0.37,0.02,0.52,0.07,0.97$, $0.14,0.61,0.17,0.09,0.03,0.82,0.08,0.21,0.37,0.20,0.25,0.72$, $0.24,0.16,0.47,0.58,0.49,0.01,0.18$ (one iteration only)
f. Using the perceptron learing rule, find the weights required to perform the following classifications $\{[(1,1,1), 0],[(-1,1,1), 0],[(-$ $1,-1,1), 1],[(-1,-1,-1), 1]\}$.
g. Maximize $f(x)=\sqrt{x}$ in $1 \leq x \leq 16$ using binary coded GA (one iteration only) given that the population size $N=6$, crossover $\operatorname{probability}\left(p_{c}\right)=0.7$ and mutation probability $\left(p_{m}\right)=0.3$.

Initial population: 00101, 011010, 010110, 111010, 101100, 001101

Random numbers for selections: $0.15,0.27,0.64,0.52,0.79$, 0.70 Random numbers for crossover: $0.62,0.80,0.50,0.47$, 0.75, 0.45

For Arithmetic crossover $\lambda=0.62$. Random numbers for mutation $0.14,0.85,0.45,0.94,0.70$ and permutation $(\Delta)=1.25$.
h. Develop McCulloch-Pitts neuron model for the logical function $F\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{\prime} x_{2} x_{3}+x_{1} x_{2}^{\prime} x_{3}+x_{1} x_{2}^{\prime} x_{3}^{\prime}$.
i. Let $X=\{a, b, c, d\}, Y=\{1,2,3,4\}$ and

$$
\begin{aligned}
\tilde{A} & =\{(a, 0),(b, 0.8),(c, 0.6),(d, 1)\} \\
\tilde{B} & =\{(1,0.2),(2,1),(3,0.8),(4,0)\} \\
\tilde{C} & =\{(1,0),(2,0.4),(3,1),(4,0.8)\}
\end{aligned}
$$

Determine the implication relation
i) IF x is \tilde{A} THEN y is \tilde{B}
ii) IF x is \tilde{A} THEN y is $\tilde{B} \operatorname{ELSE} y$ is \tilde{C}.

